If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4a^2+148a-240=0
a = -4; b = 148; c = -240;
Δ = b2-4ac
Δ = 1482-4·(-4)·(-240)
Δ = 18064
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{18064}=\sqrt{16*1129}=\sqrt{16}*\sqrt{1129}=4\sqrt{1129}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(148)-4\sqrt{1129}}{2*-4}=\frac{-148-4\sqrt{1129}}{-8} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(148)+4\sqrt{1129}}{2*-4}=\frac{-148+4\sqrt{1129}}{-8} $
| 15=400x/208 | | (X-44)+2x+x=180 | | -4a^2+148-240=0 | | 6x+5+7x=5x+7 | | a^2-37a+60=0 | | 3x+8=3x-6 | | a-11/3=21/10 | | 5+7x+3=15 | | ((5x-6)/7)-8=4 | | (5x-6)/7-8=4 | | 30/b=26/39 | | 3m+2m-2m-14-14=0 | | 40/j=26/49 | | 4/5(x+3)=6+2/7x | | x=45+5 | | 8-7=5x/6 | | t+3/2=1/2 | | (3x+4)/3=7 | | 8/9x+(-2)=6 | | 5/2x-8=6/x+3 | | (2x-4)/3=7 | | 3x+x+12+6x-50=180 | | 2x+80=x+105 | | 2x-80=x+105 | | 50-6x=4x+80 | | 2x-4/3=7 | | y^2+11y+25=13 | | x2+5x+12=0 | | 4x=38-x | | 24(-x+3)=12+2(9-2x) | | 5+x-3x=-3x+7 | | 6x-14=7+3x |